Implementation of the Autokey Algorithm ASCII Text Cryptography Using JavaFX GUI

Ricky Dirgantara¹, Hans Valerian Lenice², L. Budi Handoko³, Wise Herowati⁴

1.2.3.4 Faculty of Computer Science, University of Dian Nuswantoro, Semarang, Indonesia

Article Info:	ABSTRACT
<i>Keywords:</i> Autokey Cipher Avalanche Effect Character Error Rate Cryptography Entropy	The advance of information and communication technology has transformed the world in ways we could never have imagined. From the analog era to the digital age, technology has paved the way for new innovations and discoveries, changing the way we interact, communicate, work, and even play. Data breaches are one of the threats that frequently arise in this era of digital information since the data has great value in enhancing the security of the data we transmit, one of which is using code. There are numerous ways to encode data in cryptography, but one popular technique is Autokey Cipher cryptography. Autokey cipher is a development of vigenere cipher which is a solution to overcome the repetition of certain characters in keys. Autokey operations are performed based on the key length and calculated using the tabula recta of the vigenere cipher, the key from autokey is a combination of plaintext to produce a new key along the plaintext. In this research we built the implementation using Java library JavaFX. The GUI also shows how the autokey cipher works, which will give us an understanding about the encryption and decryption process that is built with ASCII text. And the other additions are the GUI that shows the calculations such as Avalanche Effect (AE), Bit Error Rate (BER), Character Error Rate (CER), and Entropy.
Author Correspondence:	
L. Budi Handoko, Faculty of Computer Science	

1. INTRODUCTION

University of Dian Nuswantoro Email: handoko@dsn.dinus.ac.id

Java is a programming language that is widely used for coding web applications. Java also supports a graphical user interface or GUI which is one of Java's main features. The main GUI we use is the Java library also known as JavaFX. GUI is a system of interactive visual components used in software, smartphones, and various other electronic devices [1], [2]. GUI are represented using several images which are referred to as GUI elements. With elements such as windows, icons and menus, computers can carry out commands such as opening, deleting, and moving files. One of the libraries provided by Java for building GUIs is JavaFX. JavaFX is a software platform for building Rich Internet Applications also known as RIA applications that can run on various devices. Such as desktop computers, web browsers on Windows, Linux and MacOS. Below is an overview of both processes in cryptography.

Cryptography is a process for disguising information so that it cannot be understood by other people, Cryptosystem is a method designed to carry out a cryptographic process while cryptanalysis is a process for re-disguising the results of a cryptosystem into understandable information [3], [4], [5], [6]. Plaintext can be said to be the original message/information that can still be understood or understood by humans, while ciphertext is a message that has been disguised so that it cannot be understood by humans [7], [8]. What about Encryption and Decryption? Encryption is the process of changing from plaintext to ciphertext while decryption is the process of changing ciphertext back to plaintext as shown in Figure 1.

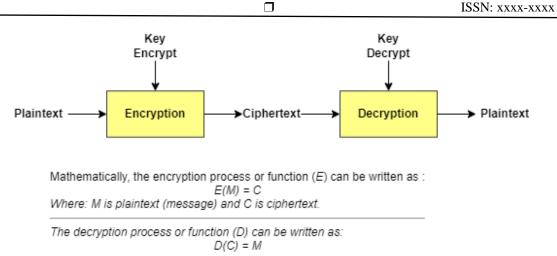


Figure 1. Common Cryptography Scheme [9]

The main problem from this research that we made is to implement a graphical user interface that integrated with Autokey Algorithm to make it easy to use and understand for users [10], [11], [12], [13]. The GUI should support many text types and formats, and that why we used ASCII text to make it easier, and it will assist users that use our program to understand how an algorithm keyboard should operate automatically throughout a process. In addition, efficiency, and speed of the encrypt and decrypt processes are quite important for long and complex texts that are encoded with ASCII. In addition, the primary concern in this study is the security and privacy of user data during the encrypting and decrypting processes. The validation and verification process to ensure that the encrypt and decrypt functions are appropriate and crucial in this course are highly important [14], [15], [16]. In addition, the GUI needs to be simple to learn or modify to support other encrypt and decrypt algorithms in the future.

Here, we want to introduce to people about how the autokey cipher algorithm is implemented or works in a GUI using the Java programming language. In this journal we also explain the calculations, namely Avalanche Effect, Bit Error Rate, Character Error Rate and Entropy, so that people can better understand the performance of the autokey algorithm and examples of its use that we describe in the GUI implementation.

2. METHOD

For this Research Method we started by searching for information about the AutoKey Cipher Algorithm and several tutorials for implementing it in a GUI using JavaFX. From these two things, we knew of the basic concepts of how AutoKey cryptography can be implemented in GUI-based applications. In this way we can carry out encryption and decryption as well as other calculations. After doing this, we also don't forget to carry out testing or tests regarding our application so that it is suitable and works correctly as we want.

2.1. Cryptography

Cryptography is an important component for maintaining data confidentiality. Cryptography plays an important role in the security and protection of network data because it allows the storage and transmission of sensitive data over unsecured networks, such as the Internet, so that it cannot be read by anyone except the person intended to receive it [3], [17], [18], [19], [20]. Cryptography Symmetric is a type of cryptography, where there is only one key to encrypt and decrypt from the information. Meanwhile, cryptography asymmetric is a type of cryptography that uses two keys: public key that can be shared to public and a private key that is only known by the data owner [21], [22], [23]. Further information about the public key is that it can be shared with anyone, but for the private key it must be kept confidential. If someone has your public key and they can encrypt your messages but only you with the private key can decrypt them.

2.2. ASCII

ASCII is based on the simple idea of using numbers to represent text, for example numbers that represent letters "A", "q", or "!", collectively letters, numbers and symbols are called characters [24]. By signing a number to each of characters in a block of text, the block of text can be represented entirely by numbers and that easily stored in the computer memories, for example letter "A" is always assigned the number '065' conversely '065' always reverse for letter "A". ASCII is an english language subsets of Unicode meaning

that all of ascii exists within the Unicode. ASCII is also commonly used in computer science particularly in programming language, text files and data conversions as displayed in Figure 2.

<u>.</u>											
\$ as 000	cii	<u>^0</u>	000	000		04	0.40	•	007	0	
000 001	0000 0×01	^@ ^A	032	0x20 0x21		064 065	0×40 0×41	e A B	096 097	0x60 0x61	_
001 002	0×01 0×02	ᆞ붜	033 034	0x21 0x22	:	065 066	0x41 0x42	H	098 098	0x61 0x62	a b
002 003	0x02 0x03	^B ^C	034 035	0x22 0x23		067	0x42 0x43	B	078	0x63	л -
003 004	0x03 0x04	~~	036 036	0x23 0x24	ž	807 1007	0X43 0~44	Ĉ D	100		С Д
004 005	0x04 0x05	^E ^F	037	0x24 0x25	#\$%&,	068 069	0x44 0x45	Ĕ	101	0x64 0x65	c d e f
005 006	0x05 0x06	~튽	038	0x25 0x26	~			E			e
007 007	0x00 0x07	^G	039	0x26 0x27	ç	070	0×46 0×47	FGHIJK	102 103	0x66 0x67	I
007 008	0x08	~13	039 040	0X27		071 072	0x47 0x48	G	103	өхь7 Øх68	Э Ріјури
		^H ^I	041	0×28 0×29	< >	872		Ţ.		0x00	ņ
009 010	0x09 0x0a	~+	041	0×27	*	073 074	0x49 0x4a	1 T	105 106	0x69 0x6a	÷
011 011	oxoa OxOb	^ј ^к	042 043	Øx2a Øx2b	+	075	0x4a 0x4b	2 2		Øx6b	1
012	0x0c	^L M N ^N	043 044	Øx2b Øx2c		076	Øx4D Øx4c	T.	107 108	Øx6c	R
Ø12 Ø13	0x0d	ᆞᇣ	044 045	0x2C	-	670	Øx4c Øx4d	LEZO	109	Øx6d	<u> </u>
013 014	0x0e	~6	045 046	Øx2d Øx2e		077 078	0x4a 0x4e		110	0x6a 0x6e	m
014 015	0x0e 0x0f		040 047	Øx2e Øx2f	-/0		0X4e 0x4e	5	111		n
Ø16	0x0r 0x10	^P	048	0×21 0×20	6	079 080	0x4f 0x50	Ϋ́Ρ	112	0x6f	0
010	0.211	^ 6	049	0x30 0x31 0x32	-1	081	0x50 0x51	5	112	0x70 0x71	\mathbf{p}
017 018	0×11 0×12	~16	050	0231	5	082	0x51	¥ D	114	0x72	4
019	0x12 0x13	~0	051	0x32 0x33	5	083	0x52 0x53	n e	115	0272	r
020	0x13 0x14	^R ^S ^T	052	0x33	3	084	0x53 0x54	а Т	116	0x73 0x74	qrst u
020	0x15	~	0 53	0x34 0x35	Ē	085	0x55	- ń	117	0,75	
021 022	0x15 0x16	~11	054	0x36	2	086	0x55	ň	118	0x75 0x76	. u
023	0x17	~ŭ	055	0x37	5	087	0x57	ŭ	119	0x77	Ň
024	0x18	~ÿ	056	0x38	ó	088	0x58	ÿ	120	Øx78	~
024 025 026	0x19	, ^ ^ ^	057	0~30	123456789	089	0x59	PQRSHUUWXYNL	120	0~79	0 8 X YNV>>
026	Øx1a	хл хл хл хл	ตรี่ร	0x39 0x3a	-	őŸÓ	Øx5a	ż	121 122 123	0x79 0x7a	2
027	$0 \times 1 b$	~7	058 059	0x3b	-	091	0x5b	ř	123	0x7b	~
028	Øx1c	~	őőő	Øx3c	~	092	Øx5c	-	124 125 126 127	Øx7c	
029	Øx1d	^Ì	Ø61		È	093	0~57	、」、	125	0274	3
030	Øx1e	~~	062	Øx3d Øx3e	>	094	Øx5d Øx5e	~	126	0x7d 0x7e	
031	Øx1f	~	063	Øx3f	>?	095	Øx5f		127	Øx7f	6
001	0/11	_	803	0AJ1	-	075	0A01	_		BATT	-
128	Ø×80	?	160	ØxaØ		192	ØxcØ	A	224 225 226 227	ØxeØ	à
129	Ø×81	?	161	Øxa1		192 193	Øxc1	Ä	225	Øxe1	á
130	Ø×82		162	Øxa2	Ě	194 195	Øxc2	Ä	226	Øxe2	â
131	Ø×83	f	163	Øxa3	÷	195	Øxc3	Ä	227	Øxe3	a
132	Ø×84	-	162 163 164	Øxa4	÷.	196	Øxc4	Ä	228 229	Øxe4	ä
133	Øx85		165	Øxa5	\$\$¥ — \$\$\$\$	197	Øxc5	8	229	Øxe5	a
134	Øx86	· + - 굿	166	Øxa6		198	Øxc6	Æ	230 231 232 233	Øxe6	æ
135	Ø×87	누	167	Øxa7	3	199	Øxc7	C	231	Øxe7	C
136	Ø×88		168	Øxa8		200	Øxc8	Ē	232	Øxe8	è
137	Ø×89	2	169	Øxa9	Cd	201	Øxc9	É	233	Øxe9	é
138	Øx8a	S	170	Øxaa	đ	202	Øxca	E	234	Øxea	ê
139	Ø×8b	<	171	Øxab	~~	203	Øxcb	E	235	Øxeb	ë
128 1229 1332 13334 1336 1336 1338 1442 1442 1442 1444 1444 1444	Øx8c	NS<0?N??	170 171 172	Øxac	٦	202 203 204	Øxcc	аааааажынынын акооооо	234 235 236 237	Øxec	るるなる あ:おお 船 ひとうのないしょう オートー ひょうう いっけい いいしょう いいしん
141	Øx8d	?	173 174	Øxad		205	Øxcd	Ι	237	Øxed	í
142	Øx8e	Z	174	Øxae	r	206	Øxce	Ι	238 239	Øxee	î
143	Ø×8£	?	175 176	Øxaf	_	207	Øxcf	I	239	Øxef	ï
144	0×90	?	176	0xb0	o	208	ØxdØ	D	240 241	ØxfØ	d
145	0×91	,	177	Øxb1	±	209	Øxd1	Ň	241	Øxf1	ñ
146	0x92 0x93	,	178	Øxb2	2	210	Øxd2	ò	242 243	Øxf2	Ò
147 148 149	N×33	.,	179 180	Øxb3	3,	211	Øxd3	ò	243	Øxf3	Ó
148	0x94 0x95		180	Øxb4		212	Øxd4	ò	244 245 246	Øxf4	Ô
149	NXA22		181	Øxb5	щ	213	Øxd5	ö	245	Øxf5	
150 151 152 153 154	0x96 0x97		182	Øxb6	٩I	214	Øxd6	0	246	Øxf6	Ö
151	6×73	2	183	Øxb7		215	Øxd7	×	247	Øxf7	÷
152	Ø×98		184	Øxb8	5	216	Øxd8	<u>o</u>	248 249 250	Øxf8	Ő
153	0×23	Т	185	Øxb9	,що	217	Øxd9	ŬU	249	Øxf 9	ů
154	Øx9a	\$	186	Øxba		218	Øxda	U.	250	Øxfa	, ù
155	Øx9b	>	187	Øxbb	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	219	Øxdb	Ŭ Ü	251	Øxfb	ų
126	Øx9c	o ?	188	Øxbc	※ 第 が	220	Øxdc	U.	252	Øxfc Øxfd	
155 156 157 158	Øx9d	?	189	Øxbd	12	221 222	Øxdd	Ÿ	251 252 253 254	0xfd	У
158	Øx9e	Z Y	190	Øxbe	ż	222	Øxde	-	254	Øxfe	ij
159	Øx9f	Y	191	Øxbf	C	223	Øxdf	β	255	Øxff	y

Figure 2. ASCII Table

2.3. Autokey Cipher

Autokey in cryptography refers to a method of encryption where the key used in the encryption process is based on the original text. In the autokey method, the original text serves as the key, and this key is automatically or cyclically applied to the text to produce the encrypted text. This method falls under the category of symmetric-key algorithms as shown in equation (1) and (2).

$$Ci = (Pi + Ki) \mod 26 \tag{1}$$

Where :

C is Result of encrypted text (Ciphertext) from i

P is Plainteks from i

K is Key from i

The encryption process involves converting the text's original length (Pi) to the text's original length (Ki), and the result is expressed in modulo (M).

$$Pi = (Ci + Ki) \mod 26 \tag{2}$$

Where :

P is Plaintext from i

C is Result of encrypted text (Ciphertext) from i

K is Key from i

The Decryption process involves reversing by subtracting the value of the encrypted text (C_i) from the value of the key (Ki), and the result expressed in modulo (M).

2.4. Avalanche Effect (AE)

The Avalanche Effect is very important because it ensures that even small changes in the autokey algorithm will produce the same output, this ensures that attackers cannot easily predict the original text through statistical analysis. This happens because in an auto-key algorithm, a small change in the original text or key must result in a significant change in the encrypted text.

$$AE = \frac{Total \ different \ bits \ from \ plaintext \ and \ ciphertext}{total \ characters} x \ 100\%$$
(3)

This equation above calculates the proportion of the encrypted text that changes when the original text or key is slightly changed.

2.5. Bit Error Rate (BER)

Bit Error Rate (BER) is a measure of telecommunication signal integrity based on the quantity or percentage of transmitted bits that are received incorrectly. Essentially, the more incorrect bits, the greater the impact on signal quality. Bit error rate is an effective indicator of full end-to-end performance because it encompasses the receiver and transmitter as well as the media between them.

$$BER = \frac{Total \, different \, bits}{total \, bits} x \, 100\% \tag{4}$$

The equation above shows us how to calculate BER by the percentage difference in bits between the encrypted text and the plaintext.

2.6. Character Error Rate (CER)

Character Error Rate is to calculate percentage levels the accuracy of an encryption results by matching and comparing characters (letters, numbers, symbols). plaintext has compared to plaintext that is added or changed with a lower presentation.

$$CER = \frac{Total \ different \ bits \ from \ plaintext \ and \ ciphertext}{total \ characters} x \ 100\%$$
(5)

The equation above shows us how to calculate CER by the percentage of character differences between the generated encrypted text and the expected text.

2.7. Entropy

Entropy is a measure of the amount of information in a message or text and is expressed in units of bits. Entropy is used to estimate the average number of bits to encode each element of the message. The higher the number of bits of entropy, the greater the complexity and the level of security in a cryptographic system. In general, entropy can be calculated using equation (6).

$$H(X) = -\sum_{i=i}^{n} a_i^2 log(p(S_i))$$
⁽⁶⁾

Where :

X is message

Si is the ith symbol in the message p(S) = the chance of occurrence of S i a is number of occurrences of S i

2.8. Proposed Method

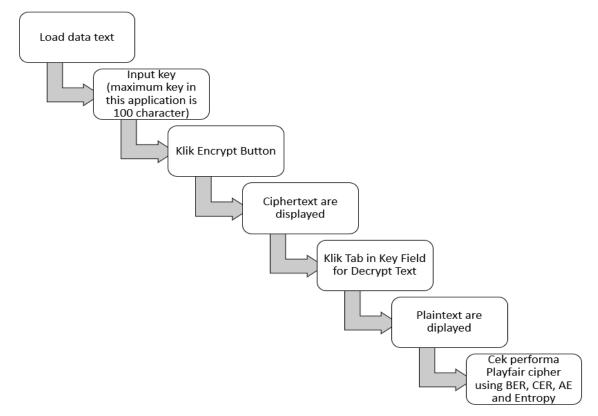


Figure 3. Proposed method based on Playfair Cipher

3. RESULTS AND DISCUSSION

This research is implemented using the Java programming language with JavaFX as its user interface, and it is executed using the IntelliJ IDEA software. The following is the GUI display when it is run, as shown in Figure 4.

		ISSN: xxxx-xxxx
Autokeyl		- 0 X
	Autokey Machine	
Teks	PainText Field	
File	Key	
	Cipertest Field	
	Encrypt Decopt	
	CipherTest	
	BER :	
	CER :	
	AE :	
	Entropy	

Figure 4. Display result

Figure 4 shows the initial view before inputting the plaintext and key; the Avalanche Effect, Character Error Rate, Bit Error Rate and Entropy item is not yet given results because the empty fields in the plaintext, key, and ciphertext and need to be filled in and entered first. After entering the plaintext and key/ciphertext in the provided columns, as shown in the display in Figure 4, and pressing the encrypt/decrypt button, the display will be complete. Once data security has been implemented by entering the plaintext and key/ciphertext, it is ensured that when executed by pressing the encryption/decryption button, the output results will be displayed as shown in Figure 5.

Autokey!	-	- (o ×
	Autokey Machine		
Teks	University Of Dan Naswantors		
File 🕨	PolisDian16		
	Encopet Decrypt		
	& ~bkd555r+qP49MT1_48c5+@b\		
	BER:		
	CER:		
	AE: 40.95%		
	Entropy-46311		

Figure 5. Encrypt Output Result

Autokey!			- 0	×
	Autokey Machine			
Teks	University Of Dian Nuswantoro			
File 🕨	PolkelDi@n*66			
The	&^VbKs855h*ejP4VMT)r_48d%+@b\			
	Encrypt Decrypt			
	University Of Dian Nuswantoro			
	BER:	0.00%		
	CER :	0.00%		
	AE :	40.95%		
	Entropy: 4.6511			

Figure 6. Decrypt Output Result

Figure 5 shows the encrypt output results when entering the plaintext and key. Meanwhile Figure 6, the decryption output displays the results when entering the same key and alo the results of the ciphertext from Figure 5, including the original text, encrypted text, decrypted text, Bit Error Rate (BER), Character Error Rate (CER), Avalanche Effect (AE), and Entropy.

Table 1	. Test	Results	with	Autokey	Method
---------	--------	---------	------	---------	--------

Plaintext	Key Ciphertext		
Universitas Dian Nuswantoro	Polke!Di@n*66	&^VbKs8S5P}6Z:Q[k4v8a"]~&)@	
Testing number 45 with Autokey Method	Polke!Di@n*66	%U``Oo,i/dwx{Co!!ex.^)nK,+@[ReeN*^)^n	
RickyDirgantara@mhs	Polke!Di@n*66	#YPW_E.\(Px+wCQ-YNt	
HansVal3r1An_Lenice	enice Polke!Di@n*66 xQ[_ <b1 3 k%u u[uif<="" td=""></b1 3>		
Autokey_Ricky_hans@mhs.dinus!ac	Autokey_Ricky_hans@mhs.dinus!ac Polke!Di@n*66 qea[Qf>IrX		
R1ckY_W1th_H4nS??</td <td>Polke!Di@n*66</td> <td>l/? II}Iw ~~ux\$[?%@</td>	Polke!Di@n*66	l/? II}Iw ~~ux\$[?%@	

Based on Table 1, it had been seen that the autokey method can be applied to ASCII text with a combination of letters, numbers, and symbols, resulting in encrypted text or ciphertext in the form of symbols based on the ASCII table. Next, tests were conducted for Avalanche Effect, BER, CER, and Entropy with results as shown in Table 2, Table 3, and Figure 7.

Table 2. Avalanche Test Re	sults
----------------------------	-------

Plaintext	Key	Avalanche Effect %
Universitas Dian Nuswantoro	Polke!Di@n*66	43%
Testing number 45 with Autokey Method	Polke!Di@n*66	39%
RickyDirgantara@mhs	Polke!Di@n*66	42%
HansVal3r1An_Lenice	Polke!Di@n*66	37%
Autokey_Ricky_hans@mhs.dinus!ac	Polke!Di@n*66	38%
R1ckY_W1th_H4nS??</td <td>Polke!Di@n*66</td> <td>36%</td>	Polke!Di@n*66	36%

Based on Table 2 above, the average Avalanche Effect value from the 6 conducted tests is 39%. This means that the Avalanche Effect generated using the Autokey method is considered quite good. The use of ASCII text with a range of letters, numbers, and symbols enhances the level of information security derived from the use of the Autokey method. However, the Avalanche Effect value is considered quite good depending on the context and desired security requirements. In cryptography, the higher the avalanche effect is the better it gets. That means a small change in the original text or key should result in a significant change in the encrypted text.

Table 5 Dit Erfor Kale	Table 5 bit Error Rate (BER) and Character Error Rate (CER) Test Result					
Plaintext	Key	Bit Error Rate %	Character Error Rate %			
Universitas Dian Nuswantoro	Polke!Di@n*66	0%	0%			
Testing number 45 with Autokey Method	Polke!Di@n*66	0%	0%			
RickyDirgantara@mhs	Polke!Di@n*66	0%	0%			
HansVal3r1An_Lenice	Polke!Di@n*66	0%	0%			
Autokey_Ricky_hans@mhs.dinus!ac	Polke!Di@n*66	0%	0%			
R1ckY_W1th_H4nS??</td <td>Polke!Di@n*66</td> <td>0%</td> <td>0%</td>	Polke!Di@n*66	0%	0%			

Table 3 Bit Error Rate (BER) and Character Error Rate (CER) Test Result

Table 3 shows us the Bit Error Rate and Character Error Rate values. The BER and CER values for each test are 0, which indicates that the encryption test has a high level of accuracy. Tests with high BER and CER values have lower CER values which indicates that the resulting ciphertext is better along with lower bit and character error rates. When evaluating algorithms for encryption or decryption, it is very important to pay attention and understand about the Character Error Rate and Bit Error Rate values. These values will show us how well the algorithm can produce precise and accurate encrypted text.

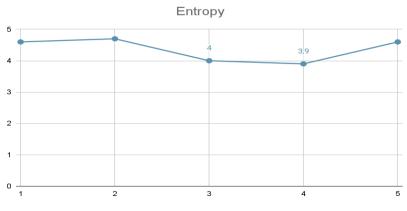


Figure 7. Entropy Test Result

Figure 7 shown that the average of the entropy test result obtained is 4 and if we look at the entropy value, it may be reasonable for randomness, but keep in mind that this value still depends on you or the final assessment set in the system. We now can understand if the high entropy results can be obtained if the text has a lot of long texts, numbers and symbols or complex randomness, and for low entropy results are text that has few short letters, numbers, and symbols.

4. CONCLUSION

This research was created using the Autokey Algorithm and the programming language used was Java and the library used from Java was JavaFX. The GUI that we created in this research has several features that have been created such as input plaintext fields, key fields, and ciphertext fields, other features are the results of input created such as ciphertext (results from plaintext encryption) and calculations that include things like Avalanche Effect, Character Error rate, Bit Error Rate, and Entropy Calculation. Apart from that, the IDE used to help run the GUI is Intellij IDE from Jetbrains. The purpose of this research is that the cryptography implementation created can be easily understood by users who use it. We hope that by making this research we can understand that cryptography is no longer used only for writing or completing code, but has developed into various functions such as encryption or decryption for data security, identity and message authentication, digital signatures and certificates, key exchange protocols, digital money, and so on.

REFERENCES

 Md. S. Hossain Biswas *et al.*, "A systematic study on classical cryptographic cypher in order to design a smallest cipher," *International Journal of Scientific and Research Publications (IJSRP)*, vol. 9, no. 12, p. p9662, Dec. 2019, doi: 10.29322/ijsrp.9.12.2019.p9662.

- R. D. Ainul, S. Wibowo, and I. Zaini, "An Encrypted QR Code Using Layered Numeral Calculation for [2] Low Powered Devices," in Proceedings of the 4th International Conference on Informatics, Technology andEngineering 2023 (InCITE 2023), 2023, pp. 607-617. doi: 10.2991/978-94-6463-288-0_50.
- S. M. Suhael, Z. A. Ahmed, and A. J. Hussain, "Proposed Hybrid Cryptosystems Based on Modifications [3] of Playfair Cipher and RSA Cryptosystem," Baghdad Science Journal, May 2023, doi: 10.21123/bsj.2023.8361.
- [4] J. P. Sermeno, K. A. S. Secugal, and N. E. Mistio, "Modified Vigenere cryptosystem: An integrated data encryption module for learning management system," International Journal of Applied Science and Engineering, vol. 18, no. 4(Special Issue), pp. 1-10, 2021, doi: 10.6703/IJASE.202106_18(4).003.
- [5] O. F. AbdelWahab, A. I. Hussein, H. F. A. Hamed, H. M. Kelash, and A. A. M. Khalaf, "Efficient Combination of RSA Cryptography, Lossy, and Lossless Compression Steganography Techniques to Hide Data," Procedia Comput Sci, vol. 182, pp. 5–12, 2021, doi: 10.1016/j.procs.2021.02.002.
- K. R. Ilaga and C. A. Sari, "Analysis of Secure Image Crypto-Stegano Based on Electronic Code Book [6] and Least Significant Bit," Journal of Applied Intelligent System, vol. 3, no. 1, pp. 28-38, 2018.
- K. Prasad and H. Mahato, "Cryptography using generalized Fibonacci matrices with Affine-Hill cipher," [7] Journal of Discrete Mathematical Sciences and Cryptography, vol. 25, no. 8, pp. 2341–2352, Nov. 2022, doi: 10.1080/09720529.2020.1838744.
- C. A. Sari, M. H. Dzaki, E. H. Rachmawanto, R. R. Ali, and M. Doheir, "High PSNR Using Fibonacci [8] Sequences in Classical Cryptography and Steganography Using LSB," International Journal of Intelligent Engineering and Systems, vol. 16, no. 4, pp. 568–580, 2023, doi: 10.22266/ijies2023.0831.46.
- [9] I. Gede, A. Putra Dewangga, T. W. Purboyo, and R. A. Nugrahaeni, "A New Approach of Data Hiding in BMP Image Using LSB Steganography and Caesar Vigenere Cipher Cryptography," 2017. [Online]. Available: http://www.ripublication.com
- [10] L. B. Handoko and C. Umam, "Data Security Using Color Image Based on Beaufort Cipher, Column Transposition and Least Significant Bit (LSB)id 2 *Corresponding author," 2023.
- [11] T. M. Aung, H. H. Naing, and N. N. Hla, "A complex transformation of monoalphabetic cipher to polyalphabetic cipher: (Vigenère-Affine Cipher)," Int J Mach Learn Comput, vol. 9, no. 3, pp. 296-303, Jun. 2019, doi: 10.18178/ijmlc.2019.9.3.801.
- [12] L. Budi Handoko and A. Rizqy, "File Cryptography Optimization Based on Vigenere Cipher and Advanced Encryption Standard (AES)," 2023.
- [13] S. K. Lakshmanan, L. Shakkeera, and V. Pandimurugan, "Efficient Auto key based Encryption and Decryption using GICK and GDCK methods," in Proceedings of the 3rd International Conference on Intelligent Sustainable Systems, ICISS 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 1102-1106. doi: 10.1109/ICISS49785.2020.9316114.
- [14] E. Y. Purba, S. Efendi, P. Sirait, and P. Sihombing, "Collaboration of RSA Algorithm Using EM2B Key with Word Auto Key Encryption Cryptography Method in Encryption of SQL Plaintext Database," in Journal of Physics: Conference Series, Institute of Physics Publishing, Sep. 2019. doi: 10.1088/1742-6596/1230/1/012009.
- [15] B. Deepa, V. Maheswari, and V. Balaji, "An Efficient Cryptosystem Using Playfair Cipher Together with Graph Labeling Techniques," in Journal of Physics: Conference Series, IOP Publishing Ltd, Jul. 2021. doi: 10.1088/1742-6596/1964/2/022016.
- [16] P. Pristiwanto, H. Sunandar, and B. Nadeak, "Analysis and Implementation of PlayFair Chipper Algorithm in Text Data Encoding Process," Jurnal Info Sains : Informatikan dan Sains, vol. 1, no. 1, pp. 19-23, 2020, [Online]. Available: http://ejournal.seaninstitute.or.id/index.php/InfoSains
- [17] M. S. Yousif, R. K. Salih, and N. M. G. Alsaidi, "A new modified playfair cipher," in AIP Conference Proceedings, American Institute of Physics Inc., Apr. 2019. doi: 10.1063/1.5095132.
- [18] N. A. Kako, H. T. Sadeeq, and A. R. Abrahim, "New symmetric key cipher capable of digraph to single letter conversion utilizing binary system," Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 2, pp. 1028–1034, May 2020, doi: 10.11591/IJEECS.V18.I2.PP1028-1034.
- [19] A. C. Licayan, B. D. Gerardo, and A. A. Hernandez, "Enhancing Playfair Cipher using Seed Based Color Substitution," in Proceedings, 2020 16th IEEE International Colloquium on Signal Processing & its Application (CSPA 2020), 2020, pp. 242-246.
- [20] P. Pristiwanto, H. Sunandar, and B. Nadeak, "Analysis and Implementation of PlayFair Chipper Algorithm in Text Data Encoding Process," Jurnal Info Sains : Informatikan dan Sains, vol. 1, no. 2, pp. 19-23, 2020, [Online]. Available: http://ejournal.seaninstitute.or.id/index.php/InfoSains

Implementation of the Autokey Algorithm (Ricky Dirgantara)

- [21] S. M. Suhael, Z. A. Ahmed, and A. J. Hussain, "Proposed Hybrid Cryptosystems Based on Modifications of Playfair Cipher and RSA Cryptosystem," *Baghdad Science Journal*, May 2023, doi: 10.21123/bsj.2023.8361.
- [22] D. Babuc, "An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic," *International Journal of Computer and Information Engineering*, pp. 17–10, 2023, [Online]. Available: https://www.researchgate.net/publication/374589454
- [23] E. Hari Rachmawanto *et al.*, "Testing Data Security Using a Vigenere Cipher Based on the QR Code," *Computer Network, Computing, Electronics, and Control Journal*, vol. 8, no. 4, pp. 701–708, 2023, doi: 10.22219/kinetik.v8i4.1734.
- [24] Permana langgeng wicaksono ellwid putra, C. A. Sari, and F. O. Isinkaye, "Secure Text Encryption for Iot Communication Using Affine Cipher And Diffie-Hellman Key Distribution On Arduino Atmega2560 IotT Devices," *Jurnal Teknik Informatika (Jutif)*, vol. 4, no. 4, pp. 849–855, Aug. 2023, doi: 10.52436/1.jutif.2023.4.4.1129.