Mengungkap Heterogenitas Stunting pada Anak: Pendekatan Machine Learning untuk Intervensi yang Tepat Sasaran di Sambas, Indonesia

Heru Pramono Hadi, Fadlil Chandra Pratama, Farrikh Al Zami, Yupie Kusumawati, Suharnawi Suharnawi, Ayu Ashari, Henry Bastian, Alfiena Nisa Belladiena

Abstract


Stunting di Kabupaten Sambas, Indonesia, merupakan tantangan kesehatan masyarakat yang kritis dengan implikasi sosio-ekonomi yang signifikan. Penelitian ini bertujuan untuk mengidentifikasi profil kasus stunting secara mendalam melalui pendekatan unsupervised machine learning guna membongkar heterogenitas pada faktor-faktor yang memengaruhinya. Analisis ini menggunakan data kesehatan cross-sectional dari 599 anak (usia 0-11 bulan) di Kabupaten Sambas, yang mencakup data demografis, sosio-ekonomi, dan akses kesehatan dengan dimensionalitas tinggi. Kami menerapkan metodologi yang sistematis, dimulai dengan pra-pemrosesan data ekstensif, reduksi dimensi menggunakan t-distributed Stochastic Neighbor Embedding (t-SNE), dan dilanjutkan dengan segmentasi populasi menggunakan clustering K-Means. Jumlah klaster optimal (k) ditentukan menggunakan metode Elbow. Analisis berhasil mengidentifikasi empat klaster (k=4) yang berbeda secara signifikan. Klaster dengan prevalensi stunting terendah secara konsisten menunjukkan tingkat pendidikan orang tua yang lebih tinggi dan akses terbaik terhadap informasi kesehatan yang disediakan oleh bidan. Sebaliknya, klaster dengan prevalensi stunting tertinggi berkorelasi dengan pendapatan keluarga terendah dan tingkat pendidikan orang tua yang rendah. Temuan kunci yang paling menonjol adalah adanya klaster berpendapatan tertinggi namun tetap memiliki tingkat stunting yang tinggi; analisis lebih lanjut menunjukkan klaster ini memiliki akses terburuk terhadap informasi kesehatan esensial. Penelitian ini menyimpulkan bahwa tingkat pendidikan orang tua dan akses terhadap informasi kesehatan yang dimediasi oleh bidan merupakan prediktor stunting yang lebih kuat dibandingkan status ekonomi semata. Temuan ini membantah asumsi bahwa intervensi ekonomi saja cukup. Hasil penelitian menyediakan basis bukti yang kuat untuk perancangan kebijakan kesehatan publik yang lebih tertarget dan tidak monolitik, dengan memprioritaskan program edukasi dan penguatan peran tenaga kesehatan di lapangan.

Full Text:

PDF

References


P. Paul, B. Arra, M. Hakobyan, M. G. Hovhannisyan, and J. Kauhanen, “The determinants of under-5 age children malnutrition and the differences in the distribution of stunting–A study from Armenia,” PLOS ONE, vol. 16, no. 5, p. e0249776, May 2021, doi: 10.1371/journal.pone.0249776.

K. Takele, T. Zewotir, and D. Ndanguza, “Understanding correlates of child stunting in Ethiopia using generalized linear mixed models,” BMC Public Health, vol. 19, no. 1, p. 626, Dec. 2019, doi: 10.1186/s12889-019-6984-x.

M. Nemerimana et al., “Factors associated with recovery from stunting at 24 months of age among infants and young children enrolled in the Pediatric Development Clinic (PDC): A retrospective cohort study in rural Rwanda,” PLOS ONE, vol. 18, no. 7, p. e0283504, Jul. 2023, doi: 10.1371/journal.pone.0283504.

N. Aguilera Vasquez and J. Daher, “Do nutrition and cash-based interventions and policies aimed at reducing stunting have an impact on economic development of low-and-middle-income countries? A systematic review,” BMC Public Health, vol. 19, no. 1, p. 1419, Dec. 2019, doi: 10.1186/s12889-019-7677-1.

J. M. K. Aheto, “Simultaneous quantile regression and determinants of under-five severe chronic malnutrition in Ghana,” BMC Public Health, vol. 20, no. 1, p. 644, Dec. 2020, doi: 10.1186/s12889-020-08782-7.

G. Tola, A. Kassa, M. Getu, B. Dibaba, and S. Neggesse, “Prevalence of stunting and associated factors among neonates in Shebadino woreda, Sidama region South Ethiopia; a community-based cross-sectional study 2022,” BMC Pediatr., vol. 23, no. 1, p. 276, Jun. 2023, doi: 10.1186/s12887-023-04080-4.

M. Gebreayohanes and A. Dessie, “Prevalence of stunting and its associated factors among children 6–59 months of age in pastoralist community, Northeast Ethiopia: A community-based cross-sectional study,” PLOS ONE, vol. 17, no. 2, p. e0256722, Feb. 2022, doi: 10.1371/journal.pone.0256722.

S. M. J. Rahman et al., “Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach,” PLOS ONE, vol. 16, no. 6, p. e0253172, Jun. 2021, doi: 10.1371/journal.pone.0253172.

R. J. Gansaonré, L. Moore, L. Bleau, J. Kobiané, and S. Haddad, “Stunting, age at school entry and academic performance in developing countries: A systematic review and meta‐analysis,” Acta Paediatr., vol. 111, no. 10, pp. 1853–1861, Oct. 2022, doi: 10.1111/apa.16449.

B. A. Takele, L. D. Gezie, and T. S. Alamneh, “Pooled prevalence of stunting and associated factors among children aged 6–59 months in Sub-Saharan Africa countries: A Bayesian multilevel approach,” PLOS ONE, vol. 17, no. 10, p. e0275889, Oct. 2022, doi: 10.1371/journal.pone.0275889.

L. Chen, C. Zhong, and Z. Zhang, “Explanation of clustering result based on multi-objective optimization,” PLOS ONE, vol. 18, no. 10, p. e0292960, Oct. 2023, doi: 10.1371/journal.pone.0292960.

S. Rahman, V. E. Johnson, and S. S. Rao, “A Hyperparameter-Free, Fast and Efficient Framework to Detect Clusters From Limited Samples Based on Ultra High-Dimensional Features,” IEEE Access, vol. 10, pp. 116844–116857, 2022, doi: 10.1109/ACCESS.2022.3218800.

B. Yu, R. Xu, M. Cai, and W. Ding, “A clustering method based on multi-positive–negative granularity and attenuation-diffusion pattern,” Inf. Fusion, vol. 103, p. 102137, Mar. 2024, doi: 10.1016/j.inffus.2023.102137.

V. Whitaker et al., “Clustering of health-related behaviours within children aged 11–16: a systematic review,” BMC Public Health, vol. 21, no. 1, p. 137, Dec. 2021, doi: 10.1186/s12889-020-10140-6.

P. Ariza Colpas, E. Vicario, E. De-La-Hoz-Franco, M. Pineres-Melo, A. Oviedo-Carrascal, and F. Patara, “Unsupervised Human Activity Recognition Using the Clustering Approach: A Review,” Sensors, vol. 20, no. 9, p. 2702, May 2020, doi: 10.3390/s20092702.

M. Satoh, “Clustering of health behaviors among Japanese adults and their association with socio-demographics and happiness,” PLOS ONE, vol. 17, no. 4, p. e0266009, Apr. 2022, doi: 10.1371/journal.pone.0266009.

D. Janssen et al., “Clustering of 27,525,663 Death Records from the United States Based on Health Conditions Associated with Death: An Example of Big Health Data Exploration,” J. Clin. Med., vol. 8, no. 7, p. 922, Jun. 2019, doi: 10.3390/jcm8070922.

J. Liao, S. Scholes, C. Mawditt, S. T. Mejía, and W. Lu, “Comparing relationships between health-related behaviour clustering and episodic memory trajectories in the United States of America and England: a longitudinal study,” BMC Public Health, vol. 22, no. 1, p. 1367, Dec. 2022, doi: 10.1186/s12889-022-13785-7.

A. Diana et al., “Determination of modifiable risk factors for length-for-age z-scores among resource-poor Indonesian infants,” PLOS ONE, vol. 16, no. 2, p. e0247247, Feb. 2021, doi: 10.1371/journal.pone.0247247.

Local Burden of Disease Child Growth Failure Collaborators, “Mapping child growth failure across low- and middle-income countries,” Nature, vol. 577, no. 7789, pp. 231–234, Jan. 2020, doi: 10.1038/s41586-019-1878-8.

T. Siswati, S. Iskandar, N. Pramestuti, J. Raharjo, A. K. Rubaya, and B. S. Wiratama, “Impact of an Integrative Nutrition Package through Home Visit on Maternal and Children Outcome: Finding from Locus Stunting in Yogyakarta, Indonesia,” Nutrients, vol. 14, no. 16, p. 3448, Aug. 2022, doi: 10.3390/nu14163448.

J. F. Willumsen, “Improving children’s diets to address the double burden of malnutrition: a healthy diet is key for all,” Public Health Nutr., vol. 22, no. 17, pp. 3187–3188, Dec. 2019, doi: 10.1017/S1368980019002635.

S. Ulijaszek, “Productive simplification in the use of anthropometric nutritional status,” Eur. J. Clin. Nutr., vol. 74, no. 3, pp. 359–361, Mar. 2020, doi: 10.1038/s41430-020-0572-0.

A. N. Sartika, M. Khoirunnisa, E. Meiyetriani, E. Ermayani, I. L. Pramesthi, and A. J. Nur Ananda, “Prenatal and postnatal determinants of stunting at age 0–11 months: A cross-sectional study in Indonesia,” PLOS ONE, vol. 16, no. 7, p. e0254662, Jul. 2021, doi: 10.1371/journal.pone.0254662.

T. R. Mokalla and V. V. Rao Mendu, “Application of quantile regression to examine changes in the distribution of Height for Age (HAZ) of Indian children aged 0–36 months using four rounds of NFHS data,” PLOS ONE, vol. 17, no. 5, p. e0265877, May 2022, doi: 10.1371/journal.pone.0265877.

M. Ahmed et al., “The relationship between maternal employment and stunting among 6–59 months old children in Gurage Zone Southern Nation Nationality People’s region, Ethiopia: A comparative cross-sectional study,” Front. Nutr., vol. 9, p. 964124, Oct. 2022, doi: 10.3389/fnut.2022.964124.

G. Namirembe et al., “Child stunting starts in utero: Growth trajectories and determinants in Ugandan infants,” Matern. Child. Nutr., vol. 18, no. 3, p. e13359, Jul. 2022, doi: 10.1111/mcn.13359.

L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction,” arXiv:1802.03426, 2018. [Online]. Available: https://arxiv.org/abs/1802.03426

A. Kurniati, D. Martini, R. Hidayat, and Y. Ratnasari, “Stunting di Kabupaten Sambas: Analisis data lintas tahun,” Jurnal Gizi dan Pangan, vol. 14, no. 2, pp. 101–112, 2018.

M. Ahmed, S. Rahman, T. Islam, and R. Karim, “Clustering-based analysis of nutritional status among children: A data mining approach,” BMC Public Health, vol. 22, no. 1, p. 1103, 2022.

J. Namirembe, S. Tusiime, and M. N. Kansiime, “Exploring maternal education and child stunting using K-means clustering approach in Uganda,” International Journal of Child Health and Nutrition, vol. 11, no. 1, pp. 25–35, 2022.

I. H. Sumon, S. Akter, M. S. H. Sujon, M. K. Alam, S. Yasmin, S. Yeasmin, M. Kabir, and M. M. Hossain, “Unsupervised Machine Learning Approach to Investigate Risk Factors of Childhood Stunting in Cambodia: Evidence from 2021/22 Demographic and Health Survey,” Children, vol. 11, no. 5, p. 736, 2024.

K. Munawar, F. Mukhtar, M. Roy, N. Majeed, and M. Y. Jalaludin, “Parenting practices, child eating behavior, and stunting in Asia: A systematic review and clustering analysis,” Nutrients, vol. 16, no. 2, p. 412, 2024.

T. T. Tamir, S. A. Gezhegn, D. Dagnew, A. T. Mekonenne, G. T. Aweke, and A. M. Lakew, “Prevalence and Determinants of Stunting in Low- and Lower-Middle-Income African Countries: A Multi-Country Cluster Analysis,” International Journal of Environmental Research and Public Health, vol. 21, no. 2, p. 310, 2024.


Refbacks

  • There are currently no refbacks.


Flag Counter

 

 Jurnal Aplikasi Teknologi dan Komputasi (e-ISSN : xxxx-xxxxp-ISSN : xxxx-xxxx) dipublikasikan oleh Organisasi ARCES.

 

Visitor Stats