Color Detection Using Webcam with Matlab HSV Color Model Segmentation Based

Nandhito Wahyu Christian, Ferris Tita Sabilillah

Abstract


This reserach is explained in detail how it works so that the color detection algorithm can run. We used in this study is the color segmentation method, namely HSV. The basis of the RGB color model not only represents color but also represents light intensity. Lighting in the color of an object is caused by the lighting around it. Therefore, direct representation of the color of objects with RGB components is very efficient. In this study, we have been able to detect several primary colors, namely RGB. However, this research can be further developed to be able to recognize several other colors. Digital image segmentation methods can be classified based on the components that serve as a reference for object separation. In this study, we have succeeded in detecting color according to the method we have determined. We have successfully detected the colors Red, Green, and Blue. In this research, we can detect any object or person. The level of accuracy that can be given to detect RGB color itself is 90%. Several factors that can make colors undetectable are lighting, the lack of clarity of an object, to the hardware factor itself.


Full Text:

PDF

References


A. K. Panggabean, A. Syahfaridzah, and N. A. Ardiningih, “Mendeteksi Objek Berdasarkan Warna Dengan Segmentasi Warna Hsv Menggunakan Aplikasi Matlab,” METHOMIKA J. Manaj. Inform. dan Komputerisasi Akunt., vol. 4, no. 2, pp. 94–97, 2021, doi: 10.46880/jmika.vol4no2.pp94-97.

A. Salsabila, R. Yunita, and C. Rozikin, “Identifikasi Citra Jenis Bunga menggunakan Algoritma KNN dengan Ekstrasi Warna HSV dan Tekstur GLCM,” Technomedia J., vol. 6, no. 1, pp. 124–137, 2021, doi: 10.33050/tmj.v6i1.1667.

J. Jumadi, Y. Yupianti, and D. Sartika, “Pengolahan Citra Digital Untuk Identifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering,” JST (Jurnal Sains dan Teknol., vol. 10, no. 2, pp. 148–156, 2021, doi: 10.23887/jstundiksha.v10i2.33636.

J. F. Fauzi, H. Tolle, and R. K. Dewi, “Tampilan Implementasi Metode RGB To HSV pada Aplikasi Pengenalan Mata Uang Kertas Berbasis Android untuk Tuna Netra,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 6, pp. 2319–2325, 2018, [Online]. Available: https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1594/577

I. S. Areni, I. Amirullah, and N. Arifin, “Klasifikasi Kematangan Stroberi Berbasis Segmentasi Warna dengan Metode HSV,” J. Penelit. Enj., vol. 23, no. 2, pp. 113–116, 2019, doi: 10.25042/jpe.112019.03.

N. F. Zulfardi, D. I. Saputra, and A. D. Ahkam, “Aplikasi Deteksi Benda Menggunakan Metode Image Substraction Sebagai Masukan Koordinat Pada Robot Lengan 3 DOF,” Semin. Nas. Teknol. dan Ris. Terap., no. September, pp. 30–37, 2019.

J. Al-Azzeh, R. Rasras, Z. Alqadi, B. Ayyoub, and A. Sharadqh, “Adaptation of Matlab K-means clustering function to create Color Image Features,” Int. J. Res. Adv. Eng. Technol., vol. 5, no. 2, pp. 10–18, 2019.

S. R. G. B. Grayscale, “Perbaikan Hasil Segmentasi Hsv Pada Citra Digital Menggunakan Metode Segmentasi Rgb Grayscale,” Edu Komputika J., vol. 6, no. 1, pp. 32–37, 2019.

R. Zahara, “Implementasi Hue Saturation Value (HSV) Untuk Identifikasi Fraktur Tulang,” Resolusi Rekayasa Tek. Inform. dan Inf., vol. 2, no. 5, pp. 214–224, 2022, doi: 10.30865/resolusi.v2i5.369.

P. Sudharshan Duth and M. Mary Deepa, “Color detection in RGB-modeled images using MAT LAB,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 29–33, 2018, doi: 10.14419/ijet.v7i2.31.13391.

H. Muchtar and F. Said, “Sistem Identifikasi Plat Nomor Kendaraan Menggunakan Metode Robert Filter dan Framing Image Berbasis Pengolahan Citra Digital,” Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 2, p. 105, 2019, doi: 10.24853/resistor.2.2.105-112.

พวงผกา มะเสนา และประณต นันทิยะกุล, “No Titleการบริหารจัดการการบริการที่มีคุณภาพใน โรงพยาบาลสังกัดกระทรวงสาธารณสุข,” วารสารวิชาการมหาวิทยาลัยอีสเทิร์นเอเชีย, vol. 4, no. 1, pp. 88–100, 2557.

I. Kurniastuti, E. N. I. Yuliati, F. Yudianto, and T. D. Wulan, “Determination of Hue Saturation Value (HSV) color feature in kidney histology image,” J. Phys. Conf. Ser., vol. 2157, no. 1, 2022, doi: 10.1088/1742-6596/2157/1/012020.

D. Wandi, F. Fauziah, and N. Hayati, “Deteksi Kelayuan Pada Bunga Mawar dengan Metode Transformasi Ruang Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV),” J. Media Inform. Budidarma, vol. 5, no. 1, p. 308, 2021, doi: 10.30865/mib.v5i1.2562.

I. Setiawan, W. Dewanta, H. A. Nugroho, and H. Supriyono, “Pengolah Citra Dengan Metode Thresholding Dengan Matlab R2014A,” J. Media Infotama, vol. 15, no. 2, 2019, doi: 10.37676/jmi.v15i2.868.

S. R. Raysyah, Veri Arinal, and Dadang Iskandar Mulyana, “Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca,” JSiI (Jurnal Sist. Informasi), vol. 8, no. 2, pp. 88–95, 2021, doi: 10.30656/jsii.v8i2.3638.

J. Sistem, I. Dan, T. Jaringan, A. May, L. Harefa, and Y. E. Kurniati, “Deteksi Tepi dalam Pengolahan Citra Digital Menggunakan Matlab ARTICLE INFORMATION ABSTRAK,” vol. 2, no. 1, pp. 10–14, 2021, [Online]. Available: https://bit.ly/SisfoTekJar


Refbacks

  • There are currently no refbacks.


Flag Counter

 International Journal of Engineering Computing Advanced Research (IJECAR) (e-ISSN : xxxx-xxxxp-ISSN : xxxx-xxxx) is published by ARCES.

 

This journal is under licensed of Creative Commons Attribution 4.0 International License.

Visitor Stats