An Image Processing Study: Image Enhancement, Image Segmentation, and Image Classification using Milkfish Freshness Images

Nur Ryan Dwi Cahyo, Maulana Malik Ibrahim Al-Ghiffary

Abstract


This Research uses sophisticated image processing techniques to handle the important problem of assessing the freshness of milkfish. Researcher presenting a CNN classification method that is trained by ResNet-101, is put through a rigorous evaluation process that includes GLCM feature extraction, parameter setup, and thorough confusion matrix assessments. The effects of both Image Enhancement and Image Segmentation techniques on texture characteristics during GLCM extraction are carefully analyzed at various freshness levels, measuring Contrast, Homogeneity, Correlation, and Energy values. With training using Adam optimization, a batch size of 16, a learning rate of 0.0001, and 30 epochs, the suggested CNN is configured to produce a balanced convergence period of 23 minutes and 36 seconds. The suggested approach performs exceptionally well in evaluation, reaching a remarkable accuracy of 99.72% throughout training. Additional testing during the testing phase confirms its effectiveness, since all metrics (recall, precision, and F1-score) remain at 100%. These outcomes highlight the resilience of the ResNet-101-based CNN in this particular image processing job and demonstrate its effectiveness in correctly categorizing milkfish freshness levels.

Full Text:

PDF

References


Badan Pusat Statistik, “Produksi dan Nilai Produksi Perikanan Budidaya Menurut Provinsi dan Jenis Budidaya.” Accessed: Jan. 22, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/3/U20wMk16RmhlR1JLWkdrMWRYQkxUVzB2YXpSelp6MDkjMw==/produksi-dan-nilai-produksi-perikanan-budidaya-menurut-provinsi-dan-jenis-budidaya.html?year=2020

Badan Pusat Statistik, “Produksi Perikanan Budidaya Menurut Komoditas Utama.” Accessed: Jan. 22, 2024. [Online]. Available: https://www.bps.go.id/id/statistics-table/2/MTUxMyMy/produksi-perikanan-budidaya-menurut-komoditas-utama.html

H. Richard, A. Natadjaja, and D. M. Wonohadidjojo, “Penerapan Algoritma Yolov4-Tiny Dan Efficientnetv2-S Untuk Deteksi Kesegaran Ikan Gurami,” Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), vol. 8, no. 2, pp. 480–488, 2023, [Online]. Available: https://tunasbangsa.ac.id/ejurnal/index.php/jurasik

V. T. Deco, A. Nilogiri, and Q. A’yun, “Klasifikasi Kesegaran Ikan Lemuru Berdasarkan Citra Mata Menggunakan Metode Convolutional Neural Network,” JASIE “Jurnal Aplikasi Sistem Informasi dan Elektronika,” vol. 3, pp. 14–25, 2021, [Online]. Available: https://nenkk.wordpress.com/2013/06/26/representasi-citra-digital/

Z. Jia, M. Li, C. Shi, J. Zhang, and X. Yang, “Determination of salmon freshness by computer vision based on eye color,” Food Packag Shelf Life, vol. 34, Dec. 2022, doi: 10.1016/j.fpsl.2022.100984.

K. Wang et al., “Rapid classification of the freshness grades of sea bass (Lateolabrax japonicus) fillets using a portable Raman spectrometer with machine learning method,” Microchemical Journal, vol. 192, Sep. 2023, doi: 10.1016/j.microc.2023.108948.

N. E. W. Nugroho and A. Harjoko, “Transliteration of Hiragana and Katakana Handwritten Characters Using CNN-SVM,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 15, no. 3, p. 221, Jul. 2021, doi: 10.22146/ijccs.66062.

M. Abdullah, M. Ahmad, and D. Han, “Facial Expression Recognition in Videos: An CNN-LSTM based Model for Video Classification,” in 2020 International Conference on Electronics, Information, and Communication, ICEIC 2020, Institute of Electrical and Electronics Engineers Inc., Jan. 2020. doi: 10.1109/ICEIC49074.2020.9051332.

M. Atikuzzaman, T. Razibur Rahman, E. Wazed, M. Parvez Hossain, and M. Zahidul Islam, “Human Activity Recognition System from Different Poses with CNN; Human Activity Recognition System from Different Poses with CNN,” 2020, doi: 10.1109/STI50764.2020.9350508/20/$31.00©20XX.

M. M. Srikantamurthy, V. P. S. Rallabandi, D. B. Dudekula, S. Natarajan, and J. Park, “Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning,” BMC Med Imaging, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12880-023-00964-0.

M. M. I. Al-Ghiffary, C. A. Sari, E. H. Rachmawanto, N. M. Yacoob, N. R. D. Cahyo, and R. R. Ali, “Milkfish Freshness Classification Using Convolutional Neural Networks Based on Resnet50 Architecture,” Advance Sustainable Science Engineering and Technology, vol. 5, no. 3, p. 0230304, Oct. 2023, doi: 10.26877/asset.v5i3.17017.

G. Ashari Rakhmat and M. Fikri Haekal, “MIND (Multimedia Artificial Intelligent Networking Database Peningkatan Performa MobilenetV3 dengan Squeeze-and-Excitation (Studi Kasus Klasifikasi Kesegaran Ikan Berdasarkan Mata Ikan),” Journal MIND Journal | ISSN, vol. 8, no. 1, pp. 27–41, 2023, doi: 10.26760/mindjournal.v8i1.27-41.

E. Prasetyo, R. Purbaningtyas, and R. D. Adityo, “Performance Evaluation of Pre-trained Convolutional Neural Network for Milkfish Freshness Classification,” in 2020 6th Information Technology International Seminar (ITIS), IEEE, Oct. 2020, pp. 30–34. doi: 10.1109/ITIS50118.2020.9321049.

E. A. Nabila, C. A. Sari, E. H. Rachmawanto, and M. Doheir, “A Good Performance of Convolutional Neural Network Based on AlexNet in Domestic Indonesian Car Types Classification,” Advance Sustainable Science Engineering and Technology, vol. 5, no. 3, p. 0230302, Oct. 2023, doi: 10.26877/asset.v5i3.16854.

A. Susanto, I. U. W. Mulyono, C. A. Sari, E. H. Rachmawanto, D. R. I. M. Setiadi, and M. K. Sarker, “Handwritten Javanese script recognition method based 12-layers deep convolutional neural network and data augmentation,” IAES International Journal of Artificial Intelligence, vol. 12, no. 3, pp. 1448–1458, Sep. 2023, doi: 10.11591/ijai.v12.i3.pp1448-1458.

X. Liu, M. Pedersen, and R. Wang, “Survey of natural image enhancement techniques: Classification, evaluation, challenges, and perspectives,” Digit Signal Process, vol. 127, p. 103547, 2022, doi: https://doi.org/10.1016/j.dsp.2022.103547.

S. Raveendran, M. D. Patil, and G. K. Birajdar, “Underwater image enhancement: a comprehensive review, recent trends, challenges and applications,” Artif Intell Rev, vol. 54, no. 7, pp. 5413–5467, Oct. 2021, doi: 10.1007/s10462-021-10025-z.

T. Pandiangan and dan Ika Bali, “Pengembangan teknik enhancement dan segmentation untuk mendeteksi tumor dini di paru-paru,” 2018.

V. Asadpour, E. J. Puttock, D. Getahun, M. J. Fassett, and F. Xie, “Automated placental abruption identification using semantic segmentation, quantitative features, SVM, ensemble and multi-path CNN,” Heliyon, vol. 9, no. 2, Feb. 2023, doi: 10.1016/j.heliyon.2023.e13577.

T. Trongtirakul, S. Agaian, and A. Oulefki, “Automated tumor segmentation in thermographic breast images,” Mathematical Biosciences and Engineering, vol. 20, no. 9, pp. 16786–16806, 2023, doi: 10.3934/mbe.2023748.

N. R. D. Cahyo, C. A. Sari, E. H. Rachmawanto, C. Jatmoko, R. R. A. Al-Jawry, and M. A. Alkhafaji, “A Comparison of Multi Class Support Vector Machine vs Deep Convolutional Neural Network for Brain Tumor Classification,” in 2023 International Seminar on Application for Technology of Information and Communication (iSemantic), IEEE, Sep. 2023, pp. 358–363. doi: 10.1109/iSemantic59612.2023.10295336.

Z. He, “Deep Learning in Image Classification: A Survey Report,” in Proceedings - 2020 2nd International Conference on Information Technology and Computer Application, ITCA 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 174–177. doi: 10.1109/ITCA52113.2020.00043.

R. Naushad, T. Kaur, and E. Ghaderpour, “Deep transfer learning for land use and land cover classification: A comparative study,” Sensors, vol. 21, no. 23, Dec. 2021, doi: 10.3390/s21238083.

N. A. Samee, G. Atteia, S. Meshoul, M. A. Al-antari, and Y. M. Kadah, “Deep Learning Cascaded Feature Selection Framework for Breast Cancer Classification: Hybrid CNN with Univariate-Based Approach,” Mathematics, vol. 10, no. 19, Oct. 2022, doi: 10.3390/math10193631.

M. Radak, H. Y. Lafta, and H. Fallahi, “Machine learning and deep learning techniques for breast cancer diagnosis and classification: a comprehensive review of medical imaging studies,” Journal of Cancer Research and Clinical Oncology. Springer Science and Business Media Deutschland GmbH, 2023. doi: 10.1007/s00432-023-04956-z.

I. P. Kamila, C. A. Sari, E. H. Rachmawanto, and N. R. D. Cahyo, “A Good Evaluation Based on Confusion Matrix for Lung Diseases Classification using Convolutional Neural Networks,” Advance Sustainable Science, Engineering and Technology, vol. 6, no. 1, p. 0240102, Dec. 2023, doi: 10.26877/asset.v6i1.17330.

E. Z. Astuti, C. A. Sari, M. Syabilla, H. Sutrisno, E. H. Rachmawanto, and M. Doheir, “Capital Optical Character Recognition Using Neural Network Based on Gaussian Filter,” Scientific Journal of Informatics, vol. 10, no. 3, pp. 261–270, Jul. 2023, doi: 10.15294/sji.v10i3.43438.

Priyanka and D. Kumar, “Feature Extraction and Selection of kidney Ultrasound Images Using GLCM and PCA,” in Procedia Computer Science, Elsevier B.V., 2020, pp. 1722–1731. doi: 10.1016/j.procs.2020.03.382.

D. Fajri Riesaputri, C. Atika Sari, D. R. Ignatius Moses Setiadi, and E. Hari Rachmawanto, “Classification of Breast Cancer using PNN Classifier based on GLCM Feature Extraction and GMM Segmentation,” in Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, iSemantic 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 83–87. doi: 10.1109/iSemantic50169.2020.9234207.

A. Zotin, Y. Hamad, K. Simonov, and M. Kurako, “Lung boundary detection for chest X-ray images classification based on GLCM and probabilistic neural networks,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 1439–1448. doi: 10.1016/j.procs.2019.09.314.

A. Theissler, M. Thomas, M. Burch, and F. Gerschner, “ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices,” Knowl Based Syst, vol. 247, Jul. 2022, doi: 10.1016/j.knosys.2022.108651.


Refbacks

  • There are currently no refbacks.


Flag Counter

 International Journal of Engineering Computing Advanced Research (IJECAR) (e-ISSN : xxxx-xxxxp-ISSN : xxxx-xxxx) is published by ARCES.

 

This journal is under licensed of Creative Commons Attribution 4.0 International License.

Visitor Stats