Classification of Perkutut Bird Using the KNN Algorithm with RGB Features

Simon Tanama, Muhamad Minanul Lathif, Christy Atika Sari

Abstract


Indonesia has 1,539 bird species, representing 17% of the world's total bird species, with 381 being endemic. Keeping birds, especially Perkutut birds (Geopelia striata), is popular in Indonesia due to their melodious voices and elegant appearance. However, the challenge of accurately identifying Perkutut species remains a problem for enthusiasts due to the similarity in feather colours and patterns among species. This study proposes a solution using the K-Nearest Neighbors (KNN) algorithm with RGB (Red, Green, Blue) feature extraction from Perkutut bird images. This study aims to help bird enthusiasts distinguish Perkutut species more efficiently and accurately. The research methodology involves collecting 315 Perkutut bird images, preprocessing data such as background removal and resizing, and extracting RGB colour features for classification using KNN. The KNN model is evaluated using accuracy metrics, and an accuracy rate of 85% was achieved in classifying Perkutut bird images. Despite some classification errors due to similar colour patterns among species, the model's performance demonstrates the potential of machine learning in bird species identification. Further development is recommended to increase the amount of training data, improve preprocessing techniques with data augmentation, and consider additional features such as texture or shape to enhance model accuracy. Exploring other algorithms, such as SVM or CNN, and developing practical applications for users are also suggested for further development


Full Text:

PDF

References


G. W. Putra, S. P. Harianto, and N. Nurcahyani, “Perilaku Harian Burung Tekukur (Streptopelia chinensis) di Lapangan Tenis Universitas Lampung,” J. Sylva Lestari, vol. 2, no. 3, pp. 93–100, 2017.

W. K. Minahasa, “(1) , (1) , (1),” no. September 2016.

G. Natasya and M. E. Prasetyo, “‘ CHAKA & CHIKI : MENGENAL LOVEBIRD ,’” pp. 93–116.

R. Turut, Memelihara 42 burung ocehan populer. Jakarta: penebar swadaya, 2012.

E. Status, O. F. Pet, and O. On, “Tingkat Pendidikan dan Status Ekonomi Pemilik Hewan Kesayangan dalam Hal Pengetahuan dan Penerapan Kesejahteraan Hewan,” vol. 15, no. 3, pp. 386–394, 2014.

A. L. Sanjaya, A. Purwantoro, and N. Wahyuningsih, “Katurangganing Kutut,” Ekspresi Seni, vol. 19, no. 2, p. 174, 2017, doi: 10.26887/ekse.v19i2.149.

B. A. Suripto, C. Christina, and I. Rosame, “Variasi Morfologi Burung Perkutut Berdasarkan Ras dan Warna Bulu yang Diternakkan di Daerah Istimewa Yogyakarta,” BIOTROPIC J. Trop. Biol., vol. 6, no. 1, pp. 37–46, 2022.

F. Delfiah, H. R. Harun, S. A. Zahara, and S. Ayu, “Diversitas dan Etno-ornitologi Burung Bernilai Ekonomis sebagai Bentuk Kearifan Lokal Masyarakat di Pasar Hobi , Toddoppuli , Makassar ( Diversity and Ethno-ornithology of Economically Valued Birds as a Form of Local Community Wisdom at Pasar Hobi , Toddo,” vol. 3, no. Lc, pp. 17–32, 2024.

D. Rohpandi, A. Sugiharto, and M. Y. S. Jati, “Klasifikasi Citra Digital Berbasis Ekstraksi Ciri Berdasarkan Tekstur Menggunakan GLCM Dengan Algoritma K-Nearest Neighbor,” pp. 79–86.

D. I. Muhammad, E. Ermatita, and N. Falih, “Penggunaan K-Nearest Neighbor (KNN) untuk Mengklasifikasi Citra Belimbing Berdasarkan Fitur Warna,” Inform. J. Ilmu Komput., vol. 17, no. 1, p. 9, 2021, doi: 10.52958/iftk.v17i1.2132.

L. Farokhah, “Implementasi K-Nearest Neighbor Untuk Klasifikasi Bunga Dengan Ekstraksi Fitur Warna Rgb Implementation of K-Nearest Neighbor for Flower Classification With Extraction of Rgb Color Features,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, pp. 1129–1136, 2020, doi: 10.25126/jtiik.202072608.

A. Apriansyah, Ilhamsyah, and T. Rismawan, “Prototype Kunci Otomatis Pada Pintu Berdasarkan Suara Pengguna Menggunakan Metode KNN (K-Nearest Neighbor),” J. Coding, Sist. Komput. Untan, vol. 04, no. 1, pp. 45–56, 2016.

D. Yosa Ardhito, D. Susilo, D. Ruswanti, and D. Retnoningsih, “Optimasi Face Recognition Untuk Presensi Pegawai,” Tech. Vacat. Educ. Int. J. Agustus, vol. 3, no. 2, pp. 2721–9798, 2023.

H. Utama, E. Daniati, and A. Masruro, “Weak Supervision Dengan Pendekatan Labeling Function Untuk Analisis Sentimen Pada Twitter,” Indones. J. Comput. Sci. Res., vol. 3, no. 1, pp. 49–57, 2024, doi: 10.59095/ijcsr.v3i1.93.

D. P. Sari and D. Juniati, “Implementasi Dimensi Fraktal Box Counting Dan K-Means Dalam Klasifikasi Jenis Kupu-Kupu (Lepidoptera) Berdasarkan Bentuk Sayap,” MATHunesa J. Ilm. Mat., vol. 11, no. 2, pp. 164–173, 2023, doi: 10.26740/mathunesa.v11n2.p164-173.

G. W. Intyanto, “Klasifikasi Citra Bunga dengan Menggunakan Deep Learning : CNN ( Convolution Neural Network ),” pp. 80–83.

S. P. Dewi, N. Nurwati, and E. Rahayu, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Terlaris Menggunakan Metode K-Nearest Neighbor,” Build. Informatics, Technol. Sci., vol. 3, no. 4, pp. 639–648, 2022, doi: 10.47065/bits.v3i4.1408.

B. Prasetyo, “Implementation of K-Nearest Neighbor Classification Algorithm as Decision Support Method in Staple Food Aid Distribution to Society Implementasi Algoritma Klasifikasi K-Nearest Neighbor Sebagai Metode Pendukung Keputusan Dalam Distribusi Bantuan Sembako P,” vol. 4, no. 1, pp. 56–62, 2024.

N. S. Marga, “Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 453–463, 2022, doi: 10.33365/jatika.v2i4.1602.


Refbacks

  • There are currently no refbacks.


Flag Counter

 International Journal of Engineering Computing Advanced Research (IJECAR) (e-ISSN : xxxx-xxxxp-ISSN : xxxx-xxxx) is published by ARCES.

 

This journal is under licensed of Creative Commons Attribution 4.0 International License.

Visitor Stats